Name: Solutions

Section:

Parametric Equations

1. A particle follows the trajectory

$$\begin{cases} x(t) = 7t + 9\\ y(t) = -t^2 + 12t \end{cases}$$

with t in seconds and distance in centimeters.

(a) What is the particles maximum height?

max height only when
$$\frac{dy}{dt} = -2t + 12 = 0$$

ONLY when $t=6$

max height
$$\underline{IS}$$
 $y(6) = -(6)^2 + 12(6)$
= -36 + 72
= 36

(b) When does the particle hit the ground, and how far from the origin does it land?

Section:

2. Some modern cell phones are able to track your change in x and y position without using a GPS, by means of their built-in accelerometers and a little bit of Calculus 1.

Suppose you are walking directly up a hill, and that your position function is given by $c(t) = (7t - 10, -t^3 + 30t^2)$.

(a) Find the slope of the hill at t = 5 during your walk, without eliminating the parameter.

slope of hill =
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3t^2 + 60t}{7}$$

when t=5, slope = $\frac{-3 \cdot (5)^2 + 60 \cdot 5}{7} = \frac{-75 + 300}{7} = \frac{275}{7}$

(b) Eliminate the parameter to find the height of the hill as a function of your horizontal position.

$$x(t) = 7t - 10$$

 $x + 10 = 7t$
 $x + 10 = 7t$
 $x + 10 = t$

$$y(t) = -t^{3} + 30 \cdot t^{2}$$

$$y = -\left(\frac{x+10}{7}\right)^{3} + 30 \cdot \left(\frac{x+10}{7}\right)^{2}$$

Name: _

Section: _

- 3. Let $c(t) = (t^2 9, t^2 8t)$
 - (a) Find the equation of the tangent line at t = 4.

$$y = m(x-x_1) + y_1$$

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t-8}{2t-9}$$

$$when t=y \Rightarrow m = \frac{2\cdot 4-8}{2\cdot 4-9} = \frac{0}{-1} = 0$$

$$y = 0 \cdot (x-7) + (-16)$$

$$x_1 = x(4) = 4^2 - 9 = 16 - 9 = 7$$

$$y_1 = y(4) = 4^2 - 8 \cdot 4 = -16$$

(b) Find the points where the tangent has slope $\frac{1}{2}$.

Find when
$$\frac{dy}{dz} = \frac{1}{2} = \frac{2z-8}{2z-9}$$

$$2z-9 = 4z-16$$

$$7 = 2z$$

$$z = \frac{7}{2}$$
Hhis is at $z = \frac{7}{2}$

$$z = \frac{7}{2}$$

$$z = \frac{7}{2}$$
(c) Find the points where the tangent is horizontal or vertical.

$$\frac{dx}{dt} = 2t$$

$$\frac{dy}{dt} = 2t - 8$$

$$= 2(t - 4)$$

tangent is horizontal when
$$\frac{dx}{dt} \neq 0$$
, $\frac{dy}{dt} = 0$ when $t = 44$ when $t = 44$ $x(4) = 4^2 - 9$ $y(4) = 4^2 - 8 = 4$

(c) Find the points where the tangent is horizontal or vertical.

Fangent is horizontal tangent is vertical when
$$\frac{dx}{dt} \neq 0$$
, $\frac{dx}{dt} = 0$ when $\frac{dx}{dt} \neq 0$ when $\frac{dx}{dt} \neq 0$ when $\frac{dx}{dt} \neq 0$ when $\frac{dx}{dt} = 0$ when $\frac{dx}{dt} = 0$ when $\frac{dx}{dt} = 0$ when $\frac{dx}{dt} = 0$ at $\frac{dx}{dt} = 0$ at

Name:

Section:

4. Find an equation for the line tangent to the curve $c(t) = \left(4\sin\left(\frac{t}{2}\right), 4\cos\left(\frac{t}{2}\right)\right)$ at the point when $t = 4\pi/3$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4 \cdot \cos(\frac{t}{2}) \cdot \frac{1}{2}}{4 \cdot (-\sin(\frac{t}{2})) \cdot \frac{1}{2}} = \frac{2 \cdot \cos(\frac{t}{2})}{-2 \cdot \sin(\frac{t}{2})}$$

$$when t = \frac{4\pi}{3}, \quad m = \frac{2 \cdot \cos(\frac{4\pi}{2})}{-2 \cdot \sin(\frac{4\pi}{2})} = \frac{\cos(\frac{2\pi}{3})}{-\sin(\frac{2\pi}{3})}$$

when
$$t = \frac{\sqrt{11}}{3}$$
, $m = \frac{2 \cdot \cos\left(\frac{\sqrt{11}/3}{2}\right)}{-2 \cdot \sin\left(\frac{\sqrt{11}/3}{2}\right)} = \frac{\cos\left(\frac{2\pi}{3}\right)}{-\sin\left(\frac{2\pi}{3}\right)}$

$$X_{1} = 4 \cdot \sin\left(\frac{4\pi/3}{2}\right) = 4 \cdot \sin\left(\frac{2\pi}{3}\right) = \frac{1}{3}$$

$$Y_{1} = 4 \cdot \cos\left(\frac{4\pi/3}{3}\right) = 4 \cdot \cos\left(\frac{2\pi}{3}\right) = \frac{1}{3}$$

$$(y = \frac{1}{\sqrt{3}}(x - \frac{\sqrt{3}}{2}) + \frac{1}{2}$$

5. Find an equation for the line tangent to the curve $c(t) = (3e^{-t}, 3e^{2t})$ at the point when t = 0

at the point when
$$t = 0$$

$$\frac{dy}{dx} = \frac{\frac{3 \cdot e^{-t} \cdot (-1)}{3 \cdot e^{2t} \cdot 2}}{\frac{3 \cdot e^{-t} \cdot 2}{3 \cdot e^{-t} \cdot 2}}$$

When
$$t=0$$
, $m=\frac{e^{-0}(-1)}{e^{2\cdot 0}\cdot 2}=\frac{1\cdot (-1)}{1\cdot 2}=\frac{-1}{2}$

$$x_1 = x(0) = 3 \cdot e^{-0} = 3$$

$$y = -\frac{1}{2}(x-3)+3$$

Section:

6. Find the points where the curve $c(t) = (t^2 - 9, t^3 - 12t)$ has horizontal tangents and vertical tangents.

See Honework 1, question D

7. Obtain a Cartesian equation for the path by eliminating the parameter

$$\begin{cases} x(\theta) = 1 + 3\sin(\theta) \\ y(\theta) = 2 - 4\cos(\theta) \end{cases}$$

See Homework 1, Question H

Section:

8. Obtain a Cartesian equation for the path by eliminating the parameter

$$\begin{cases} x(t) = \cos^2(2t) \\ y(t) = \cos(t) \end{cases}$$

See Homework 1, Question I

9. Obtain a Cartesian equation for the path by eliminating the parameter

$$\begin{cases} x(t) = 1 + \sin^2(t) \\ y(t) = \cos(t) \end{cases}$$

See Homework 1, Question J

Name:

Section:

Polar Coordinates, Equations, and Area

1. Plot and label the points with the following polar coordinates:

 $P = (1, \frac{\pi}{2}), Q = (\frac{\pi}{2}, 0), R = (2, \frac{7\pi}{6}), S = (-1, \frac{3\pi}{4}).$

2. Find a polar coordinate representation of the point with Cartesian (rectangular) coordinates

$$(-\sqrt{3},-1).$$

$$\tan(0) = \frac{4}{x} = \frac{-1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

 $r = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{3} + 1$

know $tan(\frac{\pi}{6}) = \frac{1}{43}$ Choose $\theta = \frac{2\pi}{6}$

Polar coordinate

3. Find the Cartesian (rectangular) coordinates for the point with polar coordinate $(3, \frac{5\pi}{3})$

$$X = \Gamma \cdot \omega SO$$

$$X = \Gamma \cdot \omega s O = 3 \cdot \omega s \left(\frac{5\pi}{3}\right) = 3 \cdot \frac{1}{3}$$

$$y = r \cdot sine = 3 \cdot sin \left(\frac{sin}{3}\right) = 3 \cdot \frac{13}{2}$$

Cartesian coordinate $\left(\frac{3}{2},\frac{3\sqrt{3}}{2}\right)$

$$\left(\frac{3}{2},\frac{39}{2}\right)$$

4. Obtain a polar function which graphs the Cartesian equation

$$(r \cdot \cos \theta) (r \cdot \sin \theta)^{2} = 1$$

$$r \cdot \cos \theta \cdot r^{2} \cdot \sin^{2} \theta = 1$$

$$r^{3} = \frac{1}{\cos \theta \cdot \sin^{2} \theta}$$

$$r = \sqrt[3]{\frac{1}{\cos \theta \cdot \sin^{2} \theta}}$$

$$(r \cdot \cos \theta) (r \cdot \sin \theta)^{2} = 1$$

$$(r \cdot \cos \theta) (r \cdot \sin^{2} \theta) = 1$$

$$x = r \cdot \cos \theta$$

$$y = r \cdot \sin \theta$$

$$y = r \cdot \sin \theta$$

5. Find a Cartesian equation for the graph of the polar function

$$r = \sin^{2}(\theta)$$

$$r^{2} \cdot r = r^{2} \cdot \sin^{2}\theta$$

$$r^{3} = (r \cdot \sin^{2}\theta)^{2}$$

$$(\sqrt{x^{2} + y^{2}})^{3} = y^{2}$$

$$\frac{|x^2-x^2+y^2|}{r^2-\sqrt{x^2+y^2}}$$

$$x=r.coso$$

$$y=r.sino$$

Section:

6. Fill in the following table of values for the function $r = 3\sin(2\theta)$

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	$\mid \pi \mid$
r	3·sin(0)	$3 \cdot \sin(2 \cdot \frac{\pi}{4})$ = $3 \cdot \sin(\frac{\pi}{4})$	3·sin(2·亚) =3·sin(亚)	3·Sin(2·31)	$3.5in(2\pi)$ $=3.0$
TTaa :4	to elected the o			=-3	= 0

Use it to sketch the *restriction* of the polar curve to θ in $[0, \pi]$.

Section:

7. Set up and calculate the area under a spiral $r = \theta^2 + 1$ sketched below.

8. Calculate the area of the circle $r = 4\cos(\theta)$ as an integral in polar coordinates.

Be careful to choose the correct limits of integration. $\frac{1}{2} \left(\frac{1}{2} \cdot \cos^2 \theta \right) = \frac{1}{2} \left(\frac{1}{2} \cdot \cos^2 \theta \right) = \frac{$

Section:

9. Sketch the area of the region inside the curve $r = 2\cos(\theta)$ and outside the circle $r = \sqrt{3}$. (1) Set up and (2) Compute the integral, being careful to select your limits of integration.

See Honework 2 Question 14A

Name: .

Section:

- 10. Sketch the area of the region inside one leaf of the rose $r = \cos(3\theta)$ and outside the circle $r=\frac{1}{2}.$ (1) Set up and (2) Compute the integral, being careful to select your limits of integration.

See Honework 2 Question

Section: _____

Vectors in 2D and 3D

1. Find the components of \overrightarrow{PQ} where P = (2, 3), Q = (1, 4).

$$\overrightarrow{PQ} = \langle 1-2, 4-3 \rangle$$

= $\langle -1, 1 \rangle$

2. Find the components of \overrightarrow{PQ} where P = (2, 1, -2), Q = (-1, 2, 1).

$$\overrightarrow{PQ} = \langle -1-2, 2-1, 1-(-2) \rangle$$

= $\langle -3, 1, 3 \rangle$

3. Sketch $\vec{\mathbf{v}} = \langle 1, 3 \rangle$, $\vec{\mathbf{w}} = \langle 2, 2 \rangle$, $\vec{\mathbf{v}} + \vec{\mathbf{w}}$, $\vec{\mathbf{v}} - \vec{\mathbf{w}}$

Section: _____

4. Find the length of the vector $\vec{\mathbf{u}} = \langle 1, 1 \rangle$

$$\|\vec{u}\| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

5. Find the length of the vector $\vec{\mathbf{v}} = \langle 1, 2, -1 \rangle$

$$||\sqrt{||} = \sqrt{||^2 + 2^2 + (-1)^2}$$

$$= \sqrt{|| + 4 + 1||}$$

$$= \sqrt{6}$$

6. Find the magnitude of the vector from P = (1,-1,1) to Q = (3,2,2).

$$PQ = \langle 3-1, 2-(-1), 2-1 \rangle$$

$$= \langle 2, 3, 1 \rangle$$

$$||PQ|| = \sqrt{2^2 + 3^2 + 1^2}$$

$$= \sqrt{4 + 9 + 1}$$

$$= \sqrt{14}$$

Section: _____

7. Find the unit vector $\vec{\mathbf{e}_{\mathbf{v}}}$ in the direction of $\vec{\mathbf{v}} = \langle 1, \sqrt{3} \rangle$

$$\|\vec{v}\| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = \sqrt{4} = 2$$

$$\vec{e}_{\vec{v}} = \frac{1}{\|\vec{v}\|} \cdot \vec{v} = 2 \cdot \langle 1, \sqrt{3} \rangle$$

$$\vec{e}_{\vec{v}} = \langle 2, 2\sqrt{3} \rangle$$

8. Find the unit vector $\vec{\mathbf{e_v}}$ in the direction of $\vec{\mathbf{v}} = \langle 1, -2, 3 \rangle$

$$||\overrightarrow{V}|| = \sqrt{1^2 + (-2)^2 + 3^2}$$

$$= \sqrt{1 + 4 + 9}$$

$$= \sqrt{14}$$

Section:

9. Find a parametrization for the line which passes through P = (1, 0, 2), with direction vector $\vec{v} = \langle 1, 0, -2 \rangle$

10. Find a parametrization for the line which passes through P = (1, 1, 0), which is perpendicular to the y - z plane.

Section: _____

The Dot Product Know

ガ·マ= ||ポー||ポー cos 0

1. Compute the dot product between the vectors (2, 1, -1) and (-1, 1, -1). Are the vectors orthogonal? If not, is the angle between them acute or obtuse?

$$\langle 2, | -1 \rangle \cdot \langle -1, | -1 \rangle = 2(-1) + (-1) + (-1)(-1)$$

= -2 +1 +1
= 0

2. Compute the dot product between the vectors (2,-1,3) and (3,1,-2). Are the vectors orthogonal? If not, is the angle between them acute or obtuse?

$$\langle 2, -1, 3 \rangle \cdot \langle 3, 1, -2 \rangle = 2 \cdot 3 + (-1) \cdot 1 + 3 \cdot (-2)$$

$$= 6 - 1 - 6$$

$$= -1$$

$$\cos 0 < 0$$

$$\Rightarrow \cos ii$$

$$\cos ii$$

3. Compute the dot product between the vectors (3,1,2) and (2,0,-1). Are the vectors orthogonal? If not, is the angle between them acute or obtuse?

$$\langle 3, 1, 2 \rangle \cdot \langle 2, 0, -1 \rangle = 3 \cdot 2 + 1 \cdot 0 + 2 \cdot (-1)$$

= 6 +0 *-2

the angle is a culp)

Section:

4. Find the component of $\vec{\mathbf{u}} = \langle 2, 1, -1 \rangle$ in the direction of the vector $\vec{\mathbf{v}} = \langle 1, \sqrt{3} \rangle$, as well as the projection of $\vec{\mathbf{u}}$ in the direction of $\vec{\mathbf{v}}$.

5. Find the component of $\vec{\mathbf{u}} = \langle 2, -1, 3 \rangle$ in the direction of the vector $\vec{\mathbf{v}} = \langle 3, 0, 4 \rangle$, as well as the projection of $\vec{\mathbf{u}}$ in the direction of $\vec{\mathbf{v}}$.