Exam I Review Math 261

Name: SGQJ-&HO nd Section:

Parametric Equations

1. A particle follows the trajectory

z(t)=Tt+9
y(t) = —t> + 12t

with t in seconds and distance in centimeters.

(a) What is the particles maximum height?
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(b) When does the particle hit the ground, and how far from the origin does it land?
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2. Some modern cell phones are able to track your change in z and y position without using a
GPS, by means of their built-in accelerometers and a little bit of Calculus 1.

Suppose you are walking directly up a hill, and that your position function is given by
c(t) = (7t — 10, —t3 + 30t2).

(a) Find the slope of the hill at t = 5 during your walk, without eliminating the parameter.
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(b) Eliminate the parameter to find the height of the hill as a function of your horizontal
position.
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3. Let c(t) = (t* — 9,t> — 8t)

(a) Find the equation of the tangent line at ¢t = 4.
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(b) Find the points Where the tangent has slope
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(c¢) Find the points where the tangent is horizontal or vertlcal
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4. Find an equation for the line tangent to the curve c(t) = (4 sin (§) ,4cos (§) )
at the point when ¢t = 47/3
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5. Find an equation for the line tangent to the curve c(t) = ( 3e™*,3e* )
at the point when t = 0 -t
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6. Find the points where the curve c(t) = (t? — 9,#> — 12t) has horizontal tangents and vertical
tangents.

¢

Seq  Homwook 1, guastoaD

7. Obtain a Cartesian equation for the path by eliminating the parameter

z(0) =1+ 3sin(0)
y(0) =2 — 4cos(6)
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8. Obtain a Cartesian equation for the path by eliminating the parameter

{x(t) = cos?(2t)
y(t) = cos(t)

See @& Homework 4 Quaabon T

/

9. Obtain a Cartesian equation for the path by eliminating the parameter

{a:(t) =1+ sin?(t)
y(t) = cos(t)

Ser hormewn 1, Quaskon T
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Polar Coordinates, Equations, and Area

s

1. Plot and label the points with the following polar coordinates
P:(l’ﬂ) Q:(%>O)7R:(277_g’)75 ( 1 37r)

2. Find a polar coordinate representation of the point with Cartesian (rectangular) coordinates
(—V3,-1).
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3. Find the Cartesian (rectangular) coordinates for the point with polar coordinate (3
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4. Obtain a polar function which graphs the Cartesian equation

:cy2=1
R ra: X o
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5. Find a Cartesian equation for the graph of the polar function
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6. Fill in the following table of values for the function r = 3sin(26)
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7. Set up and calculate the area under a spiral 7 = 6% + 1 sketched below.
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8. Calculate the area of the circle r = 4cos(f) as an integral in polar coordinates.
Be careful to choose the correct limits of integration. 1
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9. Sketch the area of the region inside the curve r = 2cos(#) and outside the circle r = /3.
(1) Set up and (2) Compute the integral, being careful to select your limits of integration.
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10. Sketch the area of the region inside one leaf of the rose r = cos(36) and outside the circle
1
r= 5
(1) Set up and (2) Compute the integral, being careful to select your limits of integration.
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Vectors in 2D and 3D

1. I_*:ind the components of F@ where P = (2, 3), Q = (1, 4).
B
PQ = <1-2,9-37
= <~l, 17

2. Find the components of 1@ where P = (2, 1, -2), Q = (-1, 2, 1).
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4. Find the length of the vector u = (1, 1)

Jll- =

5. Find the length of the vector v = (1,2, —1)
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6. Find the magnitude of the vector from P = (1,-1,1) to Q = (3,2,2).
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7. Find the unit vector €, in the direction of v = (1,

V3
IlVI=Ji‘+H‘§)‘ ~Ji+3 =T =2
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8. Find the unit vector €y in the direction of v = (1, -2, 3)
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9. Find a parametrization for the line which passes through P = (1, 0, 2), with direction vector

v ={(1,0,-2) —
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10. Find a parametrization for the line which passes through P = (1, 1, 0), which is perpendicular

to the y — z plane.
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T-0 = (W] )IV] cos@
The Dot Product 5"/9-2"“2

1. Compute the dot product between the vectors (2,1,—1) and (—1,1,—1). Are the vectors
orthogonal? If not, is the angle between them acute or obtuse?

L1911, -1y = 2C0+ L1+ 0ED
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2. Compute the dot product between the vectors (2,—1,3) and (3,1,

—2). Are the vectors
orthogonal? If not, is the angle between them acute or obtuse?

2,1, 30 K31,~2) = 3+ 01+ ()
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3. Compute the dot product between the vectors (3, 1,2) and (2,0, —1). Are the vectors orthog-
onal? If not, is the angle between them acute or obtuse?
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4. Find the component of U = (2,1, —1) in the direction of the vector v =< 1,1/3 >, as well as
the projection of u in the direction of v.

5. Find the component of u = (2, —1,3) in the direction of the vector v =< 3,0,4 >, as well as
the projection of u in the direction of V.
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